Detecting Causality in Multivariate Time Series via Non-Uniform Embedding

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Granger-causality graphs for multivariate time series

In this paper, we discuss the properties of mixed graphs which visualize causal relationships between the components of multivariate time series. In these Granger-causality graphs, the vertices, representing the components of the time series, are connected by arrows according to the Granger-causality relations between the variables whereas lines correspond to contemporaneous conditional associa...

متن کامل

Detecting Nonlinear Causality in Multivariate Time Series with Sparse Additive Models

We propose a nonparametric method for detecting nonlinear causal relationship within a set of multidimensional discrete time series, by using sparse additive models (SpAMs). We show that, when the input to the SpAM is a β-mixing time series, the model can be fitted by first approximating each unknown function with a linear combination of a set of B-spline bases, and then solving a group-lasso-t...

متن کامل

Non-causality in bivariate binary time series

In this paper we develop a dynamic discrete-time bivariate probit model, in which the conditions for Granger non-causality can be represented and tested. The conditions for simultaneous independence are also worked out. The model is extended in order to allow for covariates, representing individual as well as time heterogeneity. The proposed model can be estimated by Maximum Likelihood. Granger...

متن کامل

Simulation Study of Direct Causality Measures in Multivariate Time Series

Measures of the direction and strength of the interdependence among time series from multivariate systems are evaluated based on their statistical significance and discrimination ability. The best-known measures estimating direct causal effects, both linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial directed c...

متن کامل

Robust Statistics for Describing Causality in Multivariate Time Series

A widely agreed upon definition of time series causality inference, established in the seminal 1969 article of Clive Granger (1969), is based on the relative ability of the history of one time series to predict the current state of another, conditional on all other past information. While the Granger Causality (GC) principle remains uncontested, its literal application is challenged by practica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2019

ISSN: 1099-4300

DOI: 10.3390/e21121233